Foundations of the Bandera Abstraction Tools*

John Hatcliff', Matthew B. Dwyer!, Corina S. P#s#ireanu?, and Robby!

! Department of Computing and Information Sciences, Kansas State University ** *
2 Kestrel Technology, NASA Ames Research Center

Abstract. Current research is demonstrating that model-checking and
other forms of automated finite-state verification can be effective for
checking properties of software systems. Due to the exponential costs
associated with model-checking, multiple forms of abstraction are of-
ten necessary to obtain system models that are tractable for automated
checking.

The Bandera Tool Set provides multiple forms of automated support
for compiling concurrent Java software systems to models that can be
supplied to several different model-checking tools. In this paper, we de-
scribe the foundations of Bandera’s data abstraction mechanism which
is used to reduce the cardinality (and the program’s state-space) of data
domains in software to be model-checked. From a technical standpoint,
the form of data abstraction used in Bandera is simple, and it is based on
classical presentations of abstract interpretation. We describe the mech-
anisms that Bandera provides for declaring abstractions, for attaching
abstractions to programs, and for generating abstracted programs and
properties. The contributions of this work are the design and implemen-
tation of various forms of tool support required for effective application
of data abstraction to software components written in a programming
language like Java which has a rich set of linguistic features.

1 Introduction

Current research is demonstrating that model-checking and other techniques for
automated finite-state verification can be applied directly to software in written
in widely used programming languages like C and Java [1, 3,4, 15, 28]. Although
they may vary substantially in the specifics, in essence each of these techniques

* This work was supported in part by NSF under grants CCR-9703094, CCR-9708184,
CCR-9896354, and CCR-9901605, by the U.S. Army Research Laboratory and the
U.S. Army Research Office under agreement DAAD190110564, by DARPA /IXO’s
PCES program through AFRL Contract F33615-00-C-3044, by NASA under grant
NAG-02-1209, by Intel Corporation under grant 11462, and was performed for the
Formal Verification of Integrated Modular Avionics Software Cooperative Agree-
ment, NCC-1-399, sponsored by Honeywell Technology Center and NASA Langley
Research Center.

*** 234 Nichols Hall, Manhattan KS, 66506, USA.
{hatcliff,dwyer,robby}@cis.ksu.edu
t Moffet Field, CA, 94035-1000, USA. pcorina@email .arc.nasa.gov

exhaustively checks a finite-state model of a system for violations of a system
requirement formally specified by some assertion language or in some temporal
logic (e.g., LTL [22]). Finite-state verification is attractive because it automati-
cally and exhaustively checks all behaviors captured in the system model against
the given requirement. A weakness of this approach is that it is computation-
ally very expensive (especially for concurrent systems) due to the huge number
of system states, and this makes it difficult to scale the approach to realistic
systems.

The widespread adoption of Java with its built-in concurrency constructs
and emphasis on event-based programming has led to a state of affairs where
correct construction of multi-threaded reactive systems, which was previously a
domain for experienced programmers, must be tackled by novice programmers.
Moreover, Java is being used increasingly in embedded systems where it is more
important to detect and remove errors before initial deployment. Thus, there
is substantial motivation for building model-checking tools to assess the effec-
tiveness of applying software model-checking to Java. Central to any such tool
should be abstraction mechanisms that are employed to reduce the number of
states encountered during the exploration of software models.

The Bandera Tool Set is an integrated collection of program analysis, trans-
formation, and visualization components designed to facilitate experimentation
with model-checking Java source code. Bandera takes as input Java source code
and a software requirement formalized in Bandera’s temporal specification lan-
guage, and it generates a program model and specification in the input language
of one of several existing model-checking tools (including Spin [16], dSpin [9], and
JPF [3]). Both program slicing and user extensible data abstraction components
are applied to form abstract program models customized the to the property
being checked. When a model-checker produces an error trail, Bandera renders
the error trail at the source code level and allows the user to step through the
code along the path of the trail while displaying values of variables and internal
states of Java lock objects.

Various forms of predicate abstraction [1,3,28] and data abstraction [8, 10,
27] have been used in model-checking, and there is a wide body of literature
on these techniques. Given this rich resource upon which to build our abstrac-
tion facilities in Bandera, our particular choice of abstraction techniques was
influenced by multiple requirements outlined below.

(I) The abstraction facilities should be easy to understand and apply by software
engineers with little technical background in formal semantics: This is a basic
requirement if Bandera is to be applied effectively by a broad spectrum of users.

(II) The abstraction capabilities should integrate well with the dynamic features
found in Java: In Java programs, features such as dynamic thread/object cre-
ation and traversal of heap-allocated data are ubiquitous. Existing work on pred-
icate abstraction and automated refinement [1,28] has focused on software that
relies on integer computation and pointers that are restricted to referencing

static data. Automated counter-example-driven abstraction refinement for pro-
grams with dynamically allocated data/threads is still an open research area.

(III) The abstraction process should scale to realistic software systems: Methods
for selecting abstractions and methods for constructing abstract programs should
not degrade dramatically as the size of programs considered increases.

(IV) The abstraction process should be decoupled from model-checker engines:
Bandera encapsulates existing model-checkers and does not modify their func-
tionality. Thus, any abstraction process implemented by Bandera needs to be
accomplished outside of any encapsulated model-checkers.

Bandera addresses Requirement I by providing a easy-to-use and flexible
mechanism for defining abstractions. Complex domain structures are avoided by
embracing only domains that can be represented as powersets of finite sets of
“abstract tokens”. These domains (along with appropriate abstract versions of
operators) form abstract types that users can associate with program variables.
An abstract type inference takes as input an abstract type environment that
gives abstraction selections for a small set of relevant program variables and
then propagates this information through the entire program. This significantly
reduces the amount of effort required by users to specify how a system should
be abstracted.

Bandera addresses Requirement IT by taking advantage of the fact that
the type-based data abstraction process described above can be applied in a
component-wise manner to fields of different classes. This allows components
of heap-allocated data to be abstracted without considering more complicated
forms of, for example, shape analysis or predicate abstraction.

Bandera addresses Requirement III by precomputing definitions of abstract
operations (using a theorem prover) and then compiling those definitions into the
Java source code to form an abstract program. Thus, the repeated (expensive)
calls to a theorem prover used in predicate abstraction approaches are not needed
during abstract program construction or the model-checking process.

Bandera addresses Requirement IV by transforming the Java source code of
program such that concrete operations on types to be abstracted are replaced by
corresponding calls to generated abstraction operations. Since the abstraction
process takes places at the source level, existing model-checking engines do not
have to be modified to incorporate abstraction mechanisms.

In summary, we have arrived at the form of abstraction used in Bandera by
balancing a number of competing goals. Bandera’s abstraction facilities are less
automatic than the automated predicate abstraction and refinement techniques
of other tools, but they are much less expensive and can be used immediately in
the presence of concurrency and dynamically allocated data without any techni-
cal extensions. Moreover, we have found the facilities to be effective in reasoning
about a variety of real Java systems.

The tool-oriented aspects of Bandera’s abstraction facilities have been de-
scribed in detail elsewhere [10]. In this paper, we focus on technical aspects
of the facilities. Section 2 reviews the methodology that users typically follow

when applying Bandera. Section 3 describes the program/property syntax and
semantics for a simple flowchart language which we will use to present techni-
cal aspects of Bandera’s abstraction facilities. Section 4 presents a formal view
of Bandera’s abstraction definitions and how decision procedures are used to
automatically construct definitions of abstract operators and tests. Section 5
describes Bandera’s abstract type inference mechanism that is used to bind ab-
straction declarations to program components. Section 6 outlines how Bandera
uses the abstraction bindings calculated above to generate an abstracted pro-
gram. Section 7 describes how chosen program abstractions should also give rise
to appropriate abstractions of the property being checked. Section 8 summarizes
related work, and Section 9 concludes.

2 The Bandera Abstraction Facilities

Bandera is designed to support a semi-automated abstraction methodology. The
goal of this methodology is to minimize the amount of information that user’s
need to supply to perform an abstract model check of a given property on a Java
system. The main steps in applying Bandera are:

1. Identify the portion of the system to be analyzed;

Formalize the property in the Bandera Specification Language;
Compile the system and property;

Define and select the abstractions to be used;

Generate an abstracted system model and property;

Execute a model check on the abstracted system model; and
Analyze any generated counter-examples for feasibility.

NS oW

Bandera provides various forms of automated support for Step 1. Once the sys-
tem has been closed, in Step 2 the user formalizes properties to be checked using
the Bandera Specification Language (BSL) [5] — a language for defining proposi-
tions/predicates on a program’s control points and data state and for expressing
temporal relationships between declared propositions. In Step 3, Bandera com-
piles a closed Java unit and the property specification down to a three-address
intermediate form called Jimple — part of the Soot [29] Java compiler infrastruc-
ture. After transformations in Steps 4 and 5 and other transformations such as
slicing have completed, Jimple is transformed to a lower-level intermediate rep-
resentation called the Bandera Intermediate Representation (BIR). A detailed
presentation of BIR’s semantics and the translation of Java to BIR and BIR to
Promela, the Spin model-checker’s input language, is available in [18].

In the remainder of this section, we provide a brief overview of Steps 4-7.
We emphasize the toolset components related to the definition of abstractions
and the encoding of abstract system models and properties.

2.1 Defining and Selecting Abstractions

Users select abstractions by considering the semantics of predicates appearing
in the property to be checked and the program expressions that can exert either

PVS Abstraction Bindings

Abstraction © x1: Typel : AbstractTypel

S . Y . .
Speci fications Pr O‘Of x2 : Type2 : AbstractType2

ol i gat i ons xn + Typen : Abstract Typen
T RS b
v
____.| Al Specification Abstraction

BASL Compiler Library
SLABS ¢

Abstract Type

Inference
R e Abstract ed
Jinpl e Abstract Program |~ Speci al i zed
Generator Jinpl e

Fig. 1. Architecture of Bandera’s Abstraction Facilities

control or date influences on those predicates. In [10] we describe tool support in
Bandera that allows users to query and explore the program dependence graph
that is generated by using a property’s predicates to derive a slicing criterion.
While strategies for exploiting this tool support to identify the program variables
that should be abstracted and the semantics that should be preserved by such
an abstraction are relevant for users of Bandera, in this paper, we assume that
such a determination has been made. The user carries out the balance of the
abstraction process by interacting with the Source Level Abstraction (SLABS)
Bandera tool components displayed in Figure 1.

Bandera includes an abstraction library containing definitions of common
abstractions for Java base types from which users can select. If necessary, the
user specifies new abstractions using the rule-based Bandera Abstraction Spec-
ification Language (BASL). For Java base types, the user need only define an
abstract domain, and abstract versions of concrete operations are generated au-
tomatically using the decision procedures of the PVS theorem prover [24]. The
abstraction definitions are then compiled to a Java representation and added to
the library.

The user declares how program components should be abstracted by binding
class fields to entries from the abstraction library. It is usually only necessary
to attach abstraction to a relatively few variables since the toolset contains an
abstract type-inference phase that automatically propagates the abstract type
information to remaining program components. When abstract type inference is
complete, the concrete Jimple program representation is transformed to abstract
Jimple by replacing concrete constants and operations by abstract tokens and
operations drawn from the compiled abstraction representations in the abstrac-
tion library. We describe these steps in more detail in the subsections below.

abstraction EvenOdd abstracts int
begin
TOKENS = {EVEN, ODD};

abstract(n) operator * mul operator > gt
begin begin begin
n % 2 == 0 -> {EVEN}; (opD, 0ODD) -> {0DD} ; (_, _) => {true, false}
n % 2 ==1 -> {0DD}; (_, _) => {EVEN} ; end
end end
end

Fig. 2. BASL definition of EvenOdd AI (excerpts)

Defining Abstractions Bandera provides BASL — a simple declarative spec-
ification language that allows users to define the three components of an Al
described above.

Figure 2 illustrates the format of BASL for abstracting base types by show-
ing excerpts of the even-odd Al specification. The specification begins with a
definition of a set of tokens — the actual abstract domain will be the powerset
of the token set. Although one can imagine allowing users to define arbitrary
lattices for abstract domains, BASL currently does not provide this capability
because we have found powersets of finite token sets to be easy for users to
understand and quite effective for verification. Following the token set defini-
tion, the user specifies the abstraction function which maps concrete values (in
this case, integers) to elements of the abstract domain. After the abstraction
function, the BASL specification for base types must contain a definition of an
abstract operator for each corresponding basic concrete operator.

Abstract operator definitions can be generated automatically from the BASL
token set and abstraction function definitions for integer abstractions using the
elimination method based on weakest pre-conditions from [2]. Using this ap-
proach makes it extremely easy for even novice users to construct new Als for
integers. Given a binary concrete operator op, generation of the abstract opera-
tor op,ps applied to a particular pair of abstract tokens a; and as proceeds as
follows. The tool starts with the most general definition (i.e., it assumes that
0p 4ps(ai,az) can output any of the abstract tokens — which trivially satisfies the
safety requirement). Then, for each token in the output, it checks to see (using
the theorem prover PVS [24]) if the safety property would still hold if the token
is eliminated from the output. An abstract token can be safely eliminated from
the output token set if the result of the concrete operation applied to concrete
values cannot be abstracted to that abstract value.

BASL also includes formats for specifying Als for classes and arrays. Class
abstractions are defined component-wise: the BASL format allows the user to
assign Als to each field of the class. BASL’s array format allow specification of
an integer abstraction for the array index and an abstraction for the component

type [10].

A Library of Abstractions Since they are so widely applied, abstractions for
integers are organized into several different families including the concrete (or
identity), range, set, modulo and point families which we discuss below.

A concrete Al (also known as an identity AI) performs no abstraction at all,
but rather preserves all concrete values and uses the original concrete operations
on these. A range Al tracks concrete values between lower and upper bounds [
and v but abstracts values less than [and greater than u by using a token set of
the form {belowl, |, ..., u, aboveu}; an abstraction that preserves the sign of values
is a range-(0,0) abstraction. A set Al can often be used instead of a range Al
when no operations other than equality are performed (e.g., when integers are
used to simulate an enumerated type). For example, a set Al that tracks the
concrete values 3 and 5 would have the token set {three, five, other}. A modulo-k
AT merges all integers that have the same remainder when divided by k. The
EvenOdd abstraction with token set { EVEN, ODD} is a modulo-2 abstraction.
Finally, the token set for the point AI includes a single token unknown. The
point abstraction function maps all concrete values to this single value; this has
the effect of throwing away all information about the data domain.

Defining Field Abstractions Bandera includes tool support to ease the pro-
cess of binding class fields to abstractions. Abstractions are indexed by type,
thus when the user considers a field, such as BoundedBuffer.bound, the type,
int, can be used to present the candidate abstractions from the library as il-
lustrated in Figure 3. The user selects from these abstractions and repeats the
process for other variables that have been determined to require abstraction.
Once all such bindings have been made the tools calculate abstractions for all
other fields in the program. The resulting inferred abstract types are displayed
for the user to view as illustrated at the bottom of Figure 3. Conflicts in the
inferred type for a given field are presented to the user for resolution. Fields
which are unconstrained by the type inference can be set to a default type which
is usually either the concrete type or the point abstraction.

2.2 Generating an Abstracted Systemm Model and Property

Generating an abstract program involves three separate steps. First, given a
selection of Als for a program’s data components, the BASL specification for
each selected Al is retrieved from the abstraction library and compiled into
a Java class that implements the AI’s abstraction function and abstract opera-
tions. Second, the given concrete Java program is traversed, and concrete literals
and operations are replaced with calls to classes from the first step that imple-
ment the corresponding abstract literals and operations. The resulting abstract
program yields an over-approxzimation of the concrete program’s behavior. An
over-approximation ensures that every behavior in the concrete program that
violates a given property is also present in the abstract program. To ensure the
soundness of verification results, the third step abstracts the property to be
checked so as to under-approximate the set of behaviors described by the origi-
nal property. An under-approximation ensures that any program behavior that

¥ | Ahstract Type Inference <Untitled> = o |0 x|
i
Tree Type Abstraction Walue Inferred Ty pe
[Packages
@ [Default Package
@ [InCuti
@ [BoundedBuffer
buffer java.lang.Object]]
bound int Hanjeud - |
head int No Selection
tail int Setn
@ [BoundedBuffer |(int)
Gie int :
@ [add tfiavalang Qbject) [2WNS
@ [take o |Range03
[y isEmpty [+ Paoint
@ [CONCURBounded Rangeo2
@ InCut2? Range01
¥ | Ahstract Type Inference <Untitled> = o |0 x|
i
Tree Type Abstraction Walue Inferred Ty pe
[Packages
@ [Default Package
@ [InCuti
@ [BoundedBuffer
buffer java.lang.Object]] java.lang. Object]...
bound int Range04 Rangel4
head int Rangel4
tail int Fangel4
@ [BoundedBuffer |{inf)
b int RangeD4
&=] add fjava.lang Object)
&= [take [3]
[y isEmpty 0
@ COMCURBouUnded
@ InCut2?

Fig. 8. Abstraction selection and abstract type inference

is contained in the set of behaviors described by the abstract property will also
be contained in the set of behaviors described by the original property (these
issues are discussed in greater detail below and in Section 7).

Compiling Abstractions to Java Figure 4 shows excerpts of the Java repre-
sentation of the BASL even-odd specification in Figure 2. Abstract tokens are
implemented as integer values (constructed by shifting 1 into the position indi-
cated by the bit mask declarations), and the abstraction function and operations
have straightforward implementations as Java methods. The most noteworthy
aspect of the implementation is the modeling of the approximation that arises
due to abstraction. The approximate nature of the even-odd abstraction means
that a “greater than” comparison of any pair of abstract values could be true or
false. Instead of representing such sets directly (e.g., as a bit vector), a single
value is chosen non-deterministically from the set of possible values. This is valid
when the meaning of a particular program is taken to be the collection of all

public class EvenOdd {
public static final int EVEN = 0; // bit mask
public static final int ODD = 1; // bit mask

public static int abs(int n) {
if (n % 2 == 0) return (1 << EVEN);
if (n % 2==111ln?% 2 ==-1) return (1 << 0DD);
throw new RuntimeException();

}

public static int mul(int argl, int arg2) {
if (argl==(1 << O0DD) && arg2==(1 << 0DD)) return (1 << ODD);
return (1 << EVEN);

}

public static boolean gt(int argl, int arg2) {
return Bandera.choose();
}
}

Fig. 4. Compilation of BASL EvenOdd AI (excerpts)

possible traces or executions of the program. In Figure 4, the Bandera. choose ()
method denotes a non-deterministic choice between true and false values. This
method has no Jimple implementation; instead, when Bandera compiles the ab-
stracted program down to the input of given a model-checker, the method is
implemented in terms of the model-checker’s built-in constructs for expressing
non-deterministic choice. Since the model-checker will generate all paths leading
out of a non-deterministic choice, this ensures that all appropriate behaviors
are represented in the model. This approach has some interesting implications
compared to more tradition presentations of abstract interpretation. Using non-
determinism to model imprecision in this manner (in essence, by transforming
data imprecision into extra control paths), means that the abstract interpreta-
tion is maximally polyvariant, and there is never any merging of information
using, for example, least-upper-bound operators. This approach can be effective
since abstract domains in Bandera are finite, of finite height, and typically quite
small. An alternative approach would be to use a set of abstract tokens to rep-
resent imprecision and to represent the set as a bit-vector. However, splitting
sets into single tokens using non-determinism as described above yields a much
simpler implementation.

Replacing Concrete Operators Traversing a given concrete program and
replacing each operation with a call to a corresponding abstract version is rela-
tively straightforward. The only challenge lies in resolving which abstract version
of an operation should be used when multiple AI’s are selected for a program.
This problem is solved by the abstract type inference phase outlined in the pre-
vious section: in addition to propagating abstract type information to each of
the program variables, type inference also attaches abstract type information to
each node in the program’s syntax tree. For example, consider the code fragment
(x + y) + 2 where the user selected variable x to have type even-odd and y was
not selected for abstraction. This code fragment will be transformed into:

EvenOdd.add (Even0dd.add(x, Coerce.IntToEven0dd(y)),
EvenOdd.Even) ;

For the innermost concrete + operation, the user selection of even-odd for
x forces the abstract version of + to be Even0dd.add. Assuming no other con-
texts force y to be abstracted, y will hold a concrete value, and thus a coercion
(Coerce.IntToEven0dd) is inserted that converts y’s concrete value to an even-
odd abstract value. For the outermost +, since the left argument has an abstract
type of even-odd, the constant 2 in the right argument is “coerced” at translation
time to an even-odd abstract constant.

Property Abstraction Bandera’s program abstraction approach yields a model
in which execution states safely over-approximate the values of program vari-
ables. For example, a concrete state where variable x has the value 2 may be
approximated by a modulo-2 abstracted value of even. When abstracting prop-
erties, this can be problematic if the abstractions do not preserve the ability to
exactly decide the predicates in the property. Consider a predicate x==4 evalu-
ated in the example state described above. This predicate would appear to be
true in the abstract state, since 4 is clearly abstracted by even, but the predicate
evaluates to false in the concrete state.

Bandera abstracts the predicates appearing in the property being checked us-
ing an approach that is similar to [20]. Consider an Al for a variable x (e.g., signs)
that appears in a predicate (e.g., (x<1)). Bandera converts this to a disjunction
of predicates of the form x==a, where a are the abstract values that correspond
to values that imply the truth of the original predicate (e.g., x==neg implies x<1
as does x==zero, but x==pos does not). Thus, this abstract disjunction, x==zero
&& x==neg, under-approximates the concrete predicate insuring that the prop-
erty holds on the original program if it does on the abstract program.

2.3 Abstract Model Checking

The resulting abstracted program and property are converted to BIR from their
Jimple form and then to the input language of the selected model checker.
Bandera runs the model checker and displays the results to the user. Counter-
examples are mapped back to the unabstracted source program.

In addition to supporting exhaustive and sound verification of properties,
Bandera provides a number of useful bounded state-space exploration strategies.
Bounds can be placed on resources such as the size of integers and arrays, on the
number of threads allocated, and on the number of object instances allocated
at particular allocator sites. Bandera can construct models for existing model
checkers, such as Spin, that perform resource-bounded searches [18] that can often
yield effective bug-finding without performing any abstraction. These searches
can be thought of as depth-bounded searches where the depth of the search
is controlled by the bounds placed on different resources. When the bound is
exceeded for a particular resource along a particular execution path, the model-
checker simply aborts the search along that path and continues searching other
unexplored paths.

2.4 Counter-example Feasibility

Model checking an abstracted program may produce a counter-example that
is infeasible with respect to the program’s concrete semantics. Since counter-
examples may be very long and complex, user’s require tool support to assist
in the determination of feasibility. Bandera includes both an on-line technique
for biasing the state-space search to find guaranteed feasible counter-examples
and an off-line for simulating a counter-example on the abstract and concrete
programs and checking their correspondence. The former, while unsound, has
the advantage of being fast and surprisingly effective. A detailed presentation of
these techniques is given in [27].

3 Program Syntax and Semantics

We noted in the previous section that Bandera translates Java programs into the
Jimple intermediate form. To capture the essence of the Jimple structure for our
formal overview of Bandera abstraction, we use the simple flowchart language
FCL of Gomard and Jones [13,14,19].

Since our abstraction framework involves presenting abstraction definitions as
types, we present a formalization of the framework using multi-sorted algebras.
This allows new abstractions to be introduced as new sorts/types.

3.1 Signatures and Algebras

A signature X is a structure containing a set Types[X] of types (which must
include the distinguished type Bool), a non-reflexive subtyping relation <y
between the types of Types[X] that forms an upper semi-lattice and for each
(11,72) € K5 a coercion symbol [r €5 2], a set Ops[X] of typed operation
(e.9., +), a set Tests[X] of typed test symbols (e.g., =, >), and a set Cons[X]
of typed constant symbols (e.g., 2, 3). For notational simplicity, we will only
consider binary operations and tests. The type of an operation o € Ops[X] is
denoted [o]y = 71 X 72 — 7 (similarly for tests and constants). For simplicity,
for operation types [o]y = 71 X 72 = 7 we assume 73 = 72 = 7 and for test
types [0o]xz = 71 X 72 = Bool we assume 71 = 75. This corresponds to the type
structure of most of the built in base type operations in Java.

A X-algebra is a structure containing for each 7 € Types[X] a semantic do-
main [7]4, for each pair (11, 72) € <5 a total coercion relation [<z 7% C
[r]4 x [r2]4, for each operation symbol o € Ops[X] with type 7 x 7 — T
a relation [o]4 C [r]a x [7]4 x [7]4%, for each test symbol ¢ € Tests[X]
with type 7 x 7 — Bool a total relation [t]$ C [r]a x [r]4 x [Bool] where
[Bool] = {true, false}, and for each constant symbol ¢ € Cons[X] with type T
a set [c]5 C [7]4 (we will drop the super/sub-scripts X and A when these are
clear from the context). Using relations instead of functions to model the se-
mantics of operations and tests (and sets instead of a single value for constants)
provides a convenient way to capture the imprecision of abstractions.

In Bandera, the abstraction process begins by considering the concrete se-
mantics of a program which we will model using a basis configuration — a basis
signature Xp,s;5 with

Types[zbasis] = {Int, BOOI}J
L pasis = @;
Ops[Ebasis] = {+7 ¥
Tests[Xpasis] = {>, =, &&,
Cons[Z‘basis] { ..,—1,0

}
|2
1

?

3

., true, false}

Y

and a basis algebra Apgsis with the usual carrier sets for [Int] and [Bool],
the usual functional interpretation for operations and tests [+], [-], [>], [=],
etc., and singleton set interpretations for integer and boolean constants, e.g..,
[1] = {1}, [true] = {true}. The subtyping relation is empty in the basis sig-
nature, because we use subtyping to express refinement relationships between
abstractions, and no abstractions appear in as yet unabstracted concrete pro-
grams.

3.2 Program and Property Syntax

Program syntax Figure 5 presents the definition of FCL syntax. An FCL
program consists of a list of parameters z*, a label [of the initial block to be
executed, and a non-empty list b of basic blocks. Each basic block consists of
a label followed by a (possibly empty) list of assignments. Each block concludes
with a jump that transfers control from that block to another one. Even though
the syntax specifies prefix notation for operators, we will often use infix notation
in examples with deeply nested expressions to improve readability. As noted
earlier, the basis signature contains an empty subtyping relation, so coercion
expressions [T < x 7'] e will not appear in concrete programs to be abstracted.

Figure 6 presents an FCL program that computes the power function. The
input parameters to the program are m and n, and the initial block is specified by
the line (init). The parameters can be referenced and assigned to throughout
the program. Other variables such as result can be introduced without explicit
declaration. The initial value of a non-parameter variable is 0. The output of
program execution is the state of memory when the return construct is executed.

In the presentation of FCL semantics, we need to reason about nodes in a
statement-level control-flow graph (CFQG),i.e., a graph where there is a separate
node n for each assignment and jump in a given program p. We will assume that
each statement (CFG node) has an identifier that is unique within the program,
and we will annotate each statement in the source code with its unique identifier.
For example, the first assignment in the loop block has the unique identifier (or
node number) [Lloop.1].

To access code at particular program points within a given FCL-program, p,
we use the functions code[p], first[p], succ[p], defined below. We will drop the [p]
argument from the functions when it is clear from the context.

Syntaz Domains

p € Programs[X)] x € Variables[X]
b € Blocks[X] T € Type-Identifiers[X]
I € Block-Labels[X] e € Expressions[X]
a € Assignments[Y] j € Jumps[X]
al € Assignment-Lists[X] o € Ops[X]
t € Tests[X]
¢ € Cons[X]
Grammar
p == (z*) () b* a:=zx:=¢; | skip;
b ==1:alj ex=c | x| Te | oler,e2) | tler,e2)
al :==a" j n=gotol; | return; |

if e then [; else [s;
Typing Rules (ezpressions)
I'kts c:[d= 'ty z: I'(z)

I'tse:7 Jols =17x7o7
I'tx o(eye) : 7

I'kx e : 7 [t]z = 7 x 7—Bool
I' b5 t(e1,e2) : Bool

I'txe: 7 (1,7) € Kz
I'bky [rgzst]e: 7

Fig. 5. Syntax of the Flowchart Language FCL for a signature X

— The code map function code[p] maps a CFG node n to the code for the
statement that it labels. Taking the program of Figure 6 as an example,
code([loop.2]) yields the assignment n := -(n 1);.

— The function first[p] maps a label [of p to the first CFG node occurring in
the block labeled I. For example, first(loop) = [loop.1].

— The function succ[p] maps each node to the set of nodes which are immediate
successors of that node. For examples, succ([test.1]) = {[loop.1], [end.1]}.

Property Syntax LTL [22] is a rich formalism for specifying state and action
sequencing properties of systems. An LTL specification describes the intended
behavior of a system on all possible executions.

The syntax of LTL in Figure 7 includes primitive propositions P with the
usual propositional connectives, and three temporal operators. Bandera distin-
guishes logical connectives (e.g., A, V) in the specification logic from logical

(m n)

(init)
init: result := 1; [init.1]
goto test; [init.2]
test: if <(n, 1) then end else loop; [test.1]
loop: result := *(result, m); [loop.1]
n := —-(n, 1); [loop.2]
goto test; [loop.3]
end: return; [end.1]

Fig. 6. Power FCL program

Syntaz Domains

1 € Formulas[X] e € Expressions[Y]
P € Propositions[Y]

Grammar
=P | -P | P:=[n] | e
1 Napa | Y1 Ve |
Oy | O | ¥ U 12

Fig. 7. Syntax of the FCL property language for a signature X

program operations, and it automatically transforms property specifications to
Negation Normal Form (NNF) [17] to simplify the property abstraction process.
Accordingly, the syntax of Figure 7 only generates formulas in NNF, and we will
assume but not encode explicitly the fact that expressions e in propositions do
not contain logical operators.

When specifying properties of software systems, one typically uses LTL for-
mulas to reason about execution of particular program points (e.g., entering or
exiting a procedure) as well as values of particular program variables. To capture
the essence of this for FCL, we use the following primitive propositions.

— Intuitively, [n] holds when execution reaches the statement with unique iden-
tifier n (i.e., the statement at node n will be executed next). We call propo-
sitions of this form node propositions.

— Intuitively, e holds when the evaluation of e at the current node is not false.
We call propositions of this form wvariable propositions.

For example, a program requirement that says if m is odd initially, then when
the program terminates result is odd, can be written as

Olend] = O([init] A =(%(m,2),1) = O([end] A =(%(result,2),1))).

Converting the property to NNF yields
O-[end] V O(—[init] V ~=(%(m,2),1) V O([end] A =(%(result,2),1))).

This particular property is an instance of a global response property [11] un-
der the assumption[26] that the program eventually terminates (i.e., reach end).
We need the assumption to work with since our abstractions cannot preserve
liveness property. That is, an abstracted program may violate some liveness
properties even though the the original program does not. This is due to the im-
precision introduced in our abstraction process, for example, when an abstracted
loop condition cannot be decided this gives rise to infinite traces in the program
that may violate the liveness property.

Given an LTL formula ¢ where P is the of set of primitive propositions
appearing in 1, we will write Nodes[P] for the set of CFG nodes mentioned in
node propositions in P, and Vars[P] for the set of variables mentioned in variable
propositions in P.

3.3 Program and Property Semantics

Program semantics Figure 8 presents the semantics of FCL programs. The
interpretation of a X-program p is parameterized on a X-algebra A. Given a
Y, A, and a type-assignment ' mapping X-program variables to X-types, a
store o is (X, A, I')-compatible when domain(c) = domain(I") and for all z €
domain(I") . o(z) € [I'(x)]. The set of (X, A, I')-compatible stores is denoted
[I']4. The semantics of a program is expressed via transitions on program states
(n,0) where n is a CFG node identifier from p and o is a (X, A, I')-compatible
store. A series of transitions gives an execution trace through p’s statement-
level control flow graph. It is important to note that when execution is in state
(ni,01), the code at node n; has not yet been executed. Intuitively, the code at
n; is executed on the transition from (n;,0;) to successor state (n;y1,0i41)-

Figure 8 gives a simple operational semantics that formalizes the transition
relation on states. In contrast to the small-step formalization of transition re-
lation, a big-step semantics is used to formalize expression evaluation since we
consider expression evaluation to be atomic. The top of the figure gives the defi-
nition of expression, assignment, and jump evaluation. The intuition behind the
rules for these constructs is as follows.

— 0 bezpr € = v means that under store o, expression e evaluates to value v.

— 0 Fassign @ = o' means that under store o, the assignment a yields the
updated store o’.

— 0 Fjump J = | means that under the store o, jump j will cause a transition
to the block labeled 1.

The three transition rules describe small-step transitions caused by assignment
evaluation, jump evaluation leading to a new block, and jump evaluation leading
to termination. We assume that the set of node labels Nodes[FCL] used in the
semantics contains a distinguished node halt which we use to indicate a terminal
state.

Ezpressions and Assignments
v € [c]4

Ohepr e = v (0,0) €[r<kar]E

0'|_e.7:p'r c = 0-|_ezp'r r = 0'(.’L‘)

U'_empr e = v; [[0]]%(1)1,1)2,11)
0 Feapr 0(e1,e2) = v

ObFezpr € = v

0'|_e.7:p'r [T<<Z‘TI] e = v

U'_empr e; = U; I[t]]g(UhUQ,U)
0 Feapr tler,e2) = v

o |_assign r:=e = 0'[.’L‘ — ’l)]

0 Fassign skip = o

Jumps
0 Fjump gotol = 1 0 Fjump return = halt
0 Fexpr € = true
o bFjump ifethenl; elsels = I
0 Fezpr € = false
0 Fjump ifethenl; elsels = 1o
Transitions [= o
?n a;“}ia(n, 6:) if code(n) = a
7 i where n' = succ(n)
I Fjump § = 1 if code(n) = j

(n,0) — (v, 0)

where n' = first(l)

0 Fjump j = halt
(n,o) — (halt,o)

if code(n) = j
Semantic Values

n € Nodes[FCL]

s € States[FCL] = Nodes[FCL] x Stores[FCL]

Fig. 8. Operational semantics of a X¥-FCL program with respect to X-algebra A

Property semantics The semantics of a primitive proposition is defined with
respect to states.

{true} if m =n

{false} otherwise

{true} if m #n

{false} otherwise

{true} if o begpr € /> false
{false} otherwise

{true} if o Fegpr € /> true
{false} otherwise

[[m]

[-[m]]&(n, 0)

=1
{
=1
=1

Note that the semantics of expression propositions defines an under-approximation,
i.e., the proposition expression is not considered true if the expression evaluates
to {true, false}.

The semantics of an LTL formula is defined with respect to traces, where
each trace is a (possibly infinite) non-empty sequence of states written II =
51, 82, We write IT* for the suffix starting at s;, i.e., II' = s;, ;41
Thus, an execution trace of p is a state sequence II = si, $3, ... with the
following constraints: s; is an initial state for p and s; — 8341

The temporal operator O requires that its argument be true from the current
state onward, the & operator requires that its argument become true at some
point in the future, and the U operator requires that its first argument is true
up to the point where the second argument becomes true. We refer the reader
to, e.g., [17], for a formal definition of the semantics of LTL.

4 Defining Abstractions

Section 2.1 noted that each Bandera abstraction is associated with a concrete
type 7 and that each abstraction definition has four components: an abstrac-
tion name, an abstract domain, an abstraction function/relation, and abstract
versions of each concrete operation and test. Accordingly, if 7 is a type from
XY, an [¥, A]-compatible 7-abstraction o is a structure containing an abstrac-
tion type identifier 7,, a finite abstraction domain [r,], an abstraction rela-
tion ~,C [7]8& x [ra], for each 7 operation symbol o in ¥ an operation
[oa] C [ra] x [ra] x [7a], and for each 7 test symbol ¢ in X a test [o,] C
[ra] % [7a] x [Bool].

To ensure that properties that hold true for the abstracted system also hold
true in the original concrete system, one needs the standard notion of safety
(denoted <) as a simulation between operation/test relations.

Definition 1. (Safe abstract operations and abstract tests)
Let 1, be a T-abstraction.

— [o] < [oa] iff for every ci,ca,c € [7], and a1,as € [15], if c1 ~a a1, c2 ~q
az, and [o](c1,c2,c) then there exists a € [14] such that [oq](a1,a2,a) and
¢~ a,

— [t] < [ta] iff for every ci,ca € [7], a1, a2 € [Ta], andb € [Bool], ifc1 ~¢o a1,
Cy ~q ag, and [t](cy, c2,b), then [t,](a1,az,b).

As noted in Section 2.1, when defining an abstract type 7, for integers in
Bandera, the user only needs to use BASL to specify its abstraction domain
[ta] and its abstraction relation ~»,. Safe operations and tests involving the
new abstract type are generated by Bandera automatically using a calculation
similar in style to those used to calculate weakest-preconditions in predicate
abstraction.

For example, suppose that the user wants to define a new integer abstrac-
tion Tgigns. The user then can define the abstraction domain as [Tsigns] =

{neg, zero, pos}. In writing the abstraction function, the user would write sim-
ple predicates to create a covering of the integer domain (e.g., as shown for the
EvenOdd BASL definition in Figure 2). In our formal notation, we capture this
using the following predicates for each of the abstract tokens in the 7g9ns do-
main: neg? = Ax.x <0,zero? = Ax.z =0, and pos? = Az.z > 0. Given these
predicates, we can define the associated abstraction relation ~» ;s as

Vz € [Int] . Va € [Tsigns] - ~rsigns aiff a?(z).

Given these definitions, Bandera automatically constructs a safe definition for
each abstract operation and test essentially by (a) beginning with a worst case
assumption that the relation defining the abstract operation is total (note that
this is a safe definition since a total relation covers all possible behaviors of the
concrete system), and then (b) calling the decision procedures of PVS to see if
individual tuples in the relation can be eliminated.

For example, consider how the definition of +;4ns would be derived. Since
the abstract domain [7,;4r,] contains 3 abstract tokens, we would initially have
27 tuples in the total relation associated with [+i4ns]. Now, for each tuple
(a1,a2,a) € [+signs], Bandera would construct a purported theorem in the input
syntax of PVS which we represent as follows

Vni,ng € [Int] . a1?(n1) A az?(n2) = —a?([+](n1, n2)).

If PVS can prove the fact above, then the tuple (a1, a2, a) can safely be eliminated
relation defining [+igns] because, since the theorem is true, a is never needed
to simulate the result of adding n; and ns.

Specifically, consider the three tuples (pos, pos, neg), (pos, pos, zero), and
(pos, pos, pos). The decision procedure is able prove the two theorems

Vni,na € [Int] . pos?(n1) A pos?(n2) = —neg?([+](n1,n2)),
Vni,ns € [Int] . pos?(ni) A pos?(ne) = —zero?([+](n1,n2)),

but it fails to prove
Vni,ns € [Int] . pos?(ny) A pos?(nz) = —pos?([+](n1,ns2)),

so Bandera would remove the first two tuples from the relation and have
[+signs](pos, pos) = {pos} (depicting the relation as a set-valued function).

In summary, the definitions for abstract operations and tests for integer ab-
stractions is as follows.

Definition 2. Let 7, be an integer abstraction.
— Forall ay,az,a € [1,], [0a](a1,az2,a) iff the decision procedure fails to decide
Vny,ne € [Int] . a1?(n1) A ax?(n2) = —a?([o](n1,n2)).

— For all a1, a2 € [14] and b € [Bool], [ta](a1,az,b), iff the decision procedure
fails to decide

an,ng.al?(nl) A ag?(ng) = b 75 |[t]](n1,n2).

This technique can also be used to infer coercions between two integer ab-
stractions « and «'. Specifically, (a,a’) € [[1o € 7o]] if the decision procedure
fails to decide Vn.a?(n) = —a'?(n).

5 Attaching Abstractions

Bandera’s process for transforming concrete programs to abstract programs re-
quires that each variable and each occurrence of a constant, operation, and test
in the concrete program be bound to an abstraction type; these bindings indicate
to the program transformer which versions of abstract program elements should
be used in place of a particular concrete element (e.g., which abstract version of
the + operation should be used in place of a particular concrete instance of +).
Requiring the user to specify all of this binding information directly would put
a tremendous burden on the user.

To construct the desired binding information while at the same time keeping
user effort to a minimum, Bandera provides an abstract type inference facility.
A user begins the type inference phase by selecting abstractions from the ab-
straction library for a small number of program variables that the user deems
relevant. Bandera provides a default set of coercions between library abstractions
for each concrete type that the user can override if desired. For example, for any
Int abstraction 7, a coercion relation [[Int<& 7,]] is automatically introduced
by taking [[Int<« 7,]] = ~4 (i.e., the coercion is just the abstraction func-
tion) and a coercion relation [[r4 < Point]] is automatically introduced where
[[7o < Point]] simply maps all elements of [,] to the single element of the Point
domain. The default coercion definitions plus any user-defined coercions give rise
to a subtyping structure for each concrete type. This abstraction selection and
subtyping/coercion information forms the input to the type inference compo-
nent. In the Bandera methodology, boolean variables are never abstracted since
they already have a small domain. We will model this in the definitions below by
abstracting all boolean variables with an identity abstraction which has the effect
of leaving boolean variables and values unchanged by the abstraction process.

Given the program, initial abstraction selection, and subtyping information,
type inference proceeds in two steps.

1. Abstract types are propagated along value flows to determine abstraction
bindings for as many constructs as possible. If there are any abstract type
conflicts during this process, type inference is halted and the user is presented
with an error message.

2. Some variables and constructs may not be assigned abstract types in the first
step because they are independent of the variables in the initial abstraction
selection. Abstractions for independent variables/constructs are determined
according to default abstractions specified by the user. The most commonly
used defaults are (a) to abstract all independent variables/constructs with
the point abstraction which has the effect of discarding all information about
values manipulated by these constructs, or (b) to abstract these constructs

Annotated Program Abstracted Program
(m n) (m n)
(init) (init)
init: result := 11; init: result := odd;
goto test; goto test;
. 2 43y\4 .
test: if (< (n%,1%)) test if <(n, 1)
then end else loop; then end else loop;
loop: result := (x(result® mf))”; loop: result := *.,(result, m);
n := (—(n%1%))'% n := —(n, 1);
goto test; goto test;
end: return; end: return;
Fig. 9. Annotated and abstracted versions of the FCL power program

with the identity abstraction which has the effect of preserving all informa-
tion about the values manipulated by these constructs.

As an example, consider the power program and the LTL formula from Sec-
tion 3.2. Following the methodology for selecting abstractions in Section 2.1, the
EvenOdd abstraction would be appropriate for the variable m of the power pro-
gram in Figure 6. Intuitively, an abstraction is appropriate for a property when
it is precise enough to decide all propositions appearing in the property.

Suppose that the abstraction library that is used contains the concrete (iden-
tity) Int, EvenOdd, Signs, and Point abstractions for integer types. The subtyping
relation between abstractions must always form a lattice; the default subtyping
relation has Int as the least element, Point as the greatest element, with the
remaining abstractions being unrelated to each other. This lattice is augmented
with an additional element | which ends up being bound to variables/constructs
whose type is unconstrained due to the fact that they are independent of the
initial abstraction selection. The second phase of the type inference process de-
scribed above involves replacing | with one of the default options for uncon-
strained types. We write C to denoted the augmented subtyping ordering used
in the type inference process. Intuitively, if m C 79, then 71 is at least as precise
as To.

To represent the binding between program constructs and abstractions, we
will assume that each expression abstract syntax tree node is annotated with
an unique label as in the left side of Figure 9. Bindings are then captured by a
cache structure C which maps variables, labeled AST nodes, and operator/test
instances to types in the augmented subtyping lattice. Following convention,
type inference is phrased as a constraint-solving problem in which constraints

Syntaz Domain Extension _
l € Exp-Labels[FCL]
t € Terms[FCL)]

Grammar with Labeled Expression Extension

eun=1 tu=c | z | o(ei,e2) | t(e1,e2)
Constraints (Ezcerpts)
(€, Ry iff L CE()
(C,R) = o iff C(z) = C(l) and aRI
(G, R) E (o, 82)) iff (C,R) b= 1 and (¢, R) | 2

and C(I1) C C(o,1) and C(I2) C C(o, 1)
and C(o,1) = C(I)

and 11 R(o,1) and IsR(0,1)

and (o,)Rl

C,R)YEz:=1 iff ((I)CEC(z)and IRz
Data Structures
(graph nodes) N = Variables[FCL] U Exp-Labels[FCL] U
((Operations[FCL] U Tests[FCL]) x Exp-Labels[FCL])

(cache) C =N —Types[Za]L
(dependencies) RCN XN

Fig. 10. Type Inference

on cache entries are generated in a syntax-directed traversal of the program and
then solved using a union-find data structure.

5.1 Type Inference: Generating Constraints

Figure 10 presents the specification of constraint generation in the style of [23].
The data structures used include a type dependency graph with nodes N that
are either variables, labels of AST nodes, or operation/test occurrences which
are identified by a pair consisting of the operation/test symbol and a label for the
node in which the operation/test instance occurs. As described above, a cache
¢ maps each graph node to a type from the augmented lattice Types[X,]..
The relation R maintains dependency information associated with value flows.
This information is used in the second phase of type inference (described above)
where constructs that are independent of initial abstraction bindings are assigned
types. Due to the manner in which constraints are constructed, Ry implies
(o) ECl).

Constraints on C and R are generated in a syntax-directed manner according
to the following intuition.

— There are no constraints on constants except those imposed by the context
(which are captured by other rules). Thus, the type assigned to a constant
can be any value in the lattice at or above L.

— A variable reference expression (which yields the value of variable) should
have the same type as the variable itself, and zRI captures the fact that the
type of £ must be at least as precise as that of [.

— The abstraction associated with the arguments of an operator application
must lie at or below the abstraction associated with the operator itself. Note
that this will allow the type of an argument to be coerced to the type of the
operator.

— The abstraction associated with the right-hand side of an assignment must
lie at or below the abstraction associated with the variable being assigned.
Note that this will allow the type of the right-hand side to be coerced to the
type of the left-hand side.

In addition to the constraints generated from the rules above, for every vari-
able x appearing in the user’s initial abstraction selection, a constraint C(z) = 7,
is added where 7, is the abstraction type chosen for x. For each remaining vari-
able y, a constraint L C C(y) is added.

Generating the least solution for a system of constraints yields abstraction
bindings that are as precise as possible (with respect to the subtyping rules). In
particular, the ability to use coercions at operation/test arguments, etc. avoids
having argument abstractions determined by the context (i.e., having to receive
the same type as the operation), and thus allows abstraction assignments at such
positions to be as precise as possible.

For the power program example on the left in Figure 9, the following con-
straints are generated (ignoring R for now).

C(1)=1 C(1) CC(result) C(n) =C(2) C(2) CC(<,4)

C(3) = C(3) CC(<,4) C(<,4) =C(4) C(result) =C(5)
C(5)I:C(* 7) C(m) = C(6) C6) T C(x,7) C(x,7) =C(7)
C(7) CC(result) C(n)=C(8) C®) CC(—,10) C(9) =L
C9)CCl(—,10) ((—,10)=C(10) (€(10) C C(n)

Given a user selection of EvenOdd for m, the following additional constraints
are generated.

C(m) = EvenOdd and L C €(n) and L C C(result)

5.2 Type Inference: Solving Constraints

Once constraints are generated as described above, Bandera finds the least solu-
tion with respect to C. For example, the least solution for the constraints from
the power example is as follows.

é()= EvenOdd C(n) =L C(result) = EvenOdd C(1) = L

C2) = C(3) =1 C4)=1 C(5) = EvenOdd
C(6) = EvenOdd C(7) = EvenOdd C(8) = L C9) =1
C(10) = C(<,4) =1 C(x,7) = EvenOdd C(—,10) =

As illustrated by the presence of L in some of the bindings above, this step
may leave the type of some variables/AST-nodes unconstrained. In general, |-
bindings such as those shown above actually fall into two categories.

The first category contains variables/AST-nodes that produce values that can
flow into a context that is constrained. For example, this is the case with the AST
node labeled 1: the constant 1 flows into the variable result (which is bound
to EvenOdd) as a consequence of the assignment. Thus, to obtain an abstraction
assignment that is precise as possible (i.e., one that does not “bump up” the
abstraction assigned to result to a higher value in the lattice of abstractions),
the abstraction chosen for such nodes should not be greater than that of any
constrained context into which the values produced by such nodes can flow. The
dependency information provided by the R structure is used to determine if
a unconstrained node falls into this category (i.e., if a constrained context be
reached by following the dependency arcs of R).

The second category contains variables/AST-nodes that produce values that
do not flow into constrained contexts. There are several reasonable views as to
what the abstraction bindings should be for items in this category. One view
is that one should generate models that are as abstract as possible in order to
reduce the size of the state space as much as possible. Following this view, one
might bind the Point abstraction to each item in this category. On the other hand,
this could result in such an over-approximation that infeasible counter-examples
are introduced. Thus, one might want to generate models that are as precise as
possible. Following this view, one might bind the Int abstraction to each item
in this category. Note that although such a choice might lead to an unbounded
state-space (since integers are left unabstracted in the program), this is still quite
useful in practice since model-checkers such as Spin allow arbitrary integer values
with bounds imposed only by the number of bits used in the storage class (e.g.,
byte, int, etc.). Bandera actually provides a flexible mechanism for declaring
upper and lower-bounds on individual integer variables.

In any case, the two categories above are currently treated as follows in
Bandera. For the first category, Bandera binds items to the concrete Int abstrac-
tion. This always satisfies the constraints since Int is the least element in the
non-augmented abstraction lattice, and it follows the heuristic of keeping ab-
stractions as precise as possible. At the point where concrete integers flow into
abstracted contexts, an appropriate coercion will be introduced in the model.
Since items in the second category are completely unconstrained, Bandera al-
lows the user to select a default abstraction 74ef (typically, Int or Point) for these
items.

_ Capturing this in our formal notation, Bandera proceeds by building a new
C' from C as follows.

C(x),if C(z) # L
C'(z) = { Int, if C(R*(x))
Taef, if C(R*(z))

That is, already assigned an abstraction keep the same abstraction in ¢! , items
from the first category above get assigned Int, and items from the second category
get assigned the chosen default abstraction. In the example program, this results
in the following final bindings.

é(m) EvenOdd é(n) = Tdef é(result) = EvenOdd é(l) = Int

C(2) = Tee ¢3) = C(4) = Taes C(5) = EvenOdd
C(6) = EvenOdd C(7) = venOdd C(8) = Taef C(9) = Taer
C(10) = raes C(<,4) =7ger C(,7) =EvenOdd C(—,10) = res

As a future improvement to the treatment of items from the first category
(where C(R*(z)) # {L}), it may be desirable to give user the flexibility to replace
Int with any less precise abstraction 7 that still lies at or below the abstraction
of any context that an item’s value may flow into, i.e.,

TC{C'(y) |y € R*(z)and C'(y) # L}.

From a usability standpoint, it is important to note that the type inference
algorithm outlined above is efficient and scales well, and that the process of se-
lecting abstractions and visualizing type inference results is interactive. Thus,
the user can experiment with the abstraction selection with ease, e.g., by in-
crementally adding the abstraction selections and visualizing the effects of each
selection.

Bandera provides feedback to the user if the abstraction selection is inconsis-
tent. For example, suppose that the user selects m as EvenOdd abstraction and
result as Signs abstraction. A conflict arises because of the following constraints
cannot be satisfied.

C(x,7)

C(m) = EvenOdd é(result) =Signs C(result) =C(5) C(5)
¢ C(6 C(x ¢ C(result)

(m) = C(6) (6) £ C(,7) (x,7) = C(7) (7)

C
C

6 Generating Abstract Programs

Once abstract type inference has been carried on a X-program interpreted with
A, the set of [X, A]-compatible abstractions {ai, ..., @, } chosen by the user
and the final abstraction bindings from the type inference process are used to
induce an abstract program based on a new signature and algebra [X,, A,]
that combines the selected abstractions. Section 2.2 noted that this process is
implemented in Bandera by replacing primitive concrete Java operations in the
program to be abstracted with calls to Java methods in abstraction library classes
that implement semantics associated with abstract versions of operations.

We first formalize the notion of these library classes/methods by reifying
the abstraction semantics from Section 4 into constants and symbols to be used
in the signature for the abstract program. Specifically, given a 7-abstraction a,
we form a new type named by a’s abstraction type identifier 7,. For this type,
constants, operation symbols, and test symbols, are constructed as follows.

— Cons[ry] = {a | a € [r.]} That is, 7, constants are formed by introducing
a fresh symbol a for each element of the abstract domain. This corresponds
to the use of constants such as Even0Odd.Even in abstracted Java programs
(see Section 2.2).

— Ops[7a] = {0a | 0 € Ops[r]}. That is, 7, operation symbols are formed by
introducing a fresh symbol o, for each operation symbol associated with the
Y-type T being abstracted. This corresponds to the use of method calls such
as Even0dd.add (see Section 2.2).

— Tests[tq] = {ta | t € Ops[r]}. That is, 7, test symbols are formed by
introducing a fresh symbol ¢, for each test symbol associated with the X-
type 7 being abstracted.

With these syntactic elements in hand, we now form a signature to be used for
the abstracted program by combining the symbols introduced above. Given user-
selected abstractions {ay, ..., a,} along with default and user declared coercions,
a new signature X, representing this combination of abstractions is constructed
as follows.

— Types[Xy] = {Tays - Ta, } Where 7,, is the type identifier corresponding to
each abstraction «;.

— Ops[Xs] = Uie{l,,,,,n} Ops[ay]-

— Tests[X,] = Uie{l,...,n} Tests[a].

- <5, = {(r1,) | a coercion exists from 7; and 75 }.

An appropriate abstract X,-algebra is now formed in a straightforward man-
ner as follows.

For all types 7, € X, [ra]]gz = [ra] (i-e., the domain specified in the «
abstraction).

For all o, € Ops[X,] where o, is a 7, operation, [[oa]]gz = [oa] (i-e., the
operation interpretation specified in the a-abstraction).

For all t, € Tests[X,] where t, is a 7, test, [[ta]]gz = [ta] (i-e., the test
interpretation specified in the a-abstraction).

— For each coercion symbol [y < 73], the corresponding coercion relation is
defined for default coercions as explained earlier or defined by the user.

Figure 11 presents rules that formalize the translation of concrete programs
to abstract programs. The rules are guided by bindings of labeled AST nodes to
abstract types as captured by the cache C.

The first group of rules in Figure 11 have the form I ¢ 17> e, and describe
how constants of type source 7 may be transformed (or coerced) to abstract
constants of target type 7,. If there is no difference between the source and
target types, then the transformation is the identity transformation. If there is
a single abstract constant associated with a concrete integer constant then the
transformation yields that abstract constant. Otherwise, a coercion expression is
introduced to carry out the transformation during model-checking. Recall that
boolean program elements are never abstracted, so the presented rules cover all
possible cases for boolean constants.

Constant Coercion
F ¢ teoal ¢ F ot ¢
if Int # 74
Fec Tlnt = —
where ~, ([c]) = {a}

Ezxpression Coercion

if Int # 74

Fetit Int<rale Gore~o ([d]) # {a}

é t = ea
CH# e
Fchm e CHE = e _
Crd e where Int # CF P A [ro <rag] 0w a1 7 Tas
Int Ca @ Taq o1 ao el and i # ¢
Ezpression Translation
F c‘]‘f(i) e
Ckc= e, wherecé Cons[r] Croz=x

5 ng c(5 g E(. 5 ng 40 5 g E(.
Cr it ﬂcy) a1 CHER (P ear CHE G ear CFE NG ear

N 1 ~
C ko,) = og(earar) C - tFE) = tog (et ea)

Fig. 11. Translating concrete programs to abstract programs (excerpts)

The second group of rules in Figure 11 have the form C + ¢ 1722 e, and
are similar in spirit to the rules above. If there is no difference between the
source and target types, the result of the transformation is simply the result
of recursive transforming the labeled term #. If a constant is being coerced,
the constant coercion rules are used. On non-constant terms where the source
type is different from the target type, a coercion is inserted after recursively
transforming the argument of the translation.

The third group of rules in Figure 11 have the form C+F # = e, The
constant coercion rules are used to transform a constant from its concrete type
to a possibly abstract type. In the rules for operations and tests, the expres-
sion coercion rules are used to transform and possibly coerce the arguments.
Then, the concrete operation is replaced by the abstract version indicated by
the corresponding cache entry.

The remaining rules which are not displayed in Figure 11 are straightforward
— remaining constructs such as conditions, returns, and gotos are preserved
while transforming all subexpressions.

The rules of Figure 11 generate a syntactically correct abstract program (the
proposition below captures this for expressions).

Proposition 1 (Syntactlcally correct abstract expressions).

LetTks e :7andC - # = e, where C is compatible with T, ! is the labeled
version of e. Then I, Fx. eq : C(l) where domain(I,) = domain(I") and
Vz € domain(l,) . Ty(z) = C().

Applying the translation rules of Figure 11 to the power program in Figure 6
with context €’ from Section 5 gives an abstracted power program shown on the
right in Figure 9.

In the definitions that follow, when I, arises from I" due to the program ab-
straction process captured in the proposition above, we say that I, is a abstract
version of I'.

We now consider some basic safety properties that we need to express the
correctness of abstraction. If X, and A, represent the abstract signature and
algebra generated from a basis X' and A, and I, is an abstract version of I’
built using a set a of abstractions, the safety relation between a I'-compatible
store ¢ and a I,-compatible store o, (denoted ¢ < ¢') holds iff for all z €
domain(I") . 0(x) ~r,(s) 0a(T), ie., the store values for each z are related by
the abstraction relation associated with z’s abstract type.

Lemma 1. (Safety for expressions) Let I' by e : T and let 'y, by, eq @ To be
the abstract expression constructed by the type inference and program abstraction
process described above. Let o € [']4, o, € [[Fa]]g‘:, v € [7], and b € [Bool]:

— 0 doq and o b e = v implies v, € [1,] such that o4 F e = vo and
V N, Vg

—odogandot e = bimplieso, F eq = b

Lemma 2. (Safety for transitions) Let X, and A, represent the abstract sig-
nature and algebra generated from a basis X and A, and let I, be an abstract
version of I' built using a set a of abstractions, then for every 0,0’ € [[']4, and
for every o, € I[Fa]]gz, and n,n' € Nodes[FCL], o < 04 and (n,0) — (n',0')
implies 30!, € [[Fa]]g‘; such that (n,0,) — (n',0.,) and o' < ol,.

Given these basic properties, the fact that a concrete program is simulated
by its abstracted counterpart is established in a straightforward manner.

7 Generating Abstract Properties

When abstracting properties, we want to ensure that if an abstracted property
holds for an abstracted program, then the original property holds for the original
program. In order to achieve this goal, properties have to be under-approzimated.
This is the dual of the process of abstracting a program. A program is abstracted
by over-approximating its behaviors, i.e., the abstracted program may contain
more behaviors that are not present in the original program due to the impre-
cision introduced in the abstraction process. Thus, if the abstracted program
satisfies a particular requirement, then we can safely conclude that the original
program satisfies the requirement. When abstracting a property, however, the
abstraction may introduce imprecision such that the abstracted property may
allow more behaviors of the program that satisfies it. Thus, we only consider the
cases where the abstracted property can precisely decide the original property,
i.e., under-approximating it.

Property abstraction begins in Bandera by performing type-inference on and
abstracting each expression e in the property where property expressions are
constructing following the grammar in Figure 7. Let e be a property expression
such that I' + e : Bool and domain(I') = Variables[e] where Variables]e]
denotes the set of variables occurring in e. Furthermore, assume that I, is an
abstract version of I" and that e, is an abstract version of e (i.e., as generated
by the transformation process described in the previous section where we have
I',F ey : Bool).

Section 3.3 defined the semantics of expression propositions as an under-
approximation (i.e., an expression is only considered to be true when it does not
evaluate to false). Bandera represents this semantics by constructing explicitly
a disjunctive normal form that encodes the cases of stored values that cause an
expression proposition to be interpreted as true.

For an abstract property expression e, such that I', F e, : Bool, we denote
the set of I,-compatible stores that make e, true as

TrueStores[I,](eq) def {oa | 04 € [Ia] and In.[ex](n,04q)}-

Note that the semantics of expression propositions is independent of control
points n.
Next, we denote a conjunction that specifies the bindings of a store o, as

Bindings(oy) def /\{=(:1:,a) | (z,a) € 04}

The following function 7 specifies the transformation that Bandera uses to
generate abstracted properties (the transformation is structure preserving except
for the case of proposition expressions which we give below).

T(eq) = \/{Bz’ndz’ngs(aa) | oo € TrueStores[I,](ea)}
T(—eq) = \/{Bindings(aa) | 00 € TrueStores[I'y](—eq)}
For example, suppose that we want to abstract the property
O-[end] V O(—[init] V ~=(%(m,2),1) V O([end] A =(%(result,2),1))).

with m and result abstracted using the evenodd abstraction. After applying 7T,
the property becomes

O=lend] vV O(—[init] V =(m, even) V O([end] A =(result,odd))).

This is the case where the abstraction is precise enough to decide the original
property.

However, suppose that now m is abstracted using the evenodd abstraction,
and result is abstracted using the point abstraction. After applying 7T, the
property becomes

O=lend] V O(—[init] V =(m, even) V &([end] A false)).

This is the case where an abstraction is not precise enough to decide a proposi-
tion, i.e., =(%(result, 2), 1) is under-approximated to false, because point is not
precise enough. When submitted to a model checker, infeasible counter-examples
would be generated as evidence of the imprecision. Various proofs of property
under-approximation can be found in [25].

8 Related Work

There is a wide body of literature on abstract interpretation. In our discussions
of related work, we confine ourselves to work on automated abstraction facili-
ties dedicated to constructing abstract models suitable for model-checking from
program source code or closely related artifacts.

The closest work to ours is that of Gallardo, et. al. [12] on alpha SPIN
— a tool for applying data abstraction to systems described in Promela (the
input language of SPIN [15]). Alpha SPIN collects abstractions in libraries and
transforms both Promela models and properties following a strategy that is
similar to Bandera’s. Alpha SPIN does not include automated facilities such
as those found in Bandera for deriving sound abstractions, finding appropriate
program components to abstract using dependency information, nor automated
support for attaching abstractions via type-inference.

A closely related project that focuses on data abstraction of C program source
code is the work on the abC tool by Dams, Hesse, and Holzmann [7]. Rather than
providing a variety of abstractions in a library, abC focuses on wariable hiding
— a conceptually simple and practically very useful form of data abstraction
in model checking which amounts to suppressing all information about a given
set of variables. abC uses an integrated demand-driven pointer analysis to deal
effectively with C pointers, and it has been implemented as an extension of
GCC. Functionality that is similar to what abC provides can be achieved using
Bandera’s slicing facility (which detects and removes irrelevant variables) and
Bandera’s Point abstraction. However, since abC is dedicated to variable hiding,
it provides a more precise form of abstraction attachment (e.g., compared to
Bandera’s type inference) for pointer types.

The Automated Software Engineering group at NASA Ames has developed
a flexible explicit-state model-checker Java Pathfinder (JPF) that works directly
on Java byte-code [3]. JPF includes a number of interesting search heuristics
that are proving effective in software model-checking. The Ames group has also
produced a simple predicate abstraction tool and a distributed version of the
model-checking engine. Due to the difficulties associated with dynamically cre-
ated data, the JPF predicate abstraction tool applies to integer variables only
and does not include support for automated refinement. In collaboration with
researchers at NASA Ames, JPF has been incorporated as a back-end checker
for Bandera.

The Microsoft Research SLAM Project [1] focuses on checking sequential
C code using well-engineered predicate abstraction and abstraction refinement
tools. As discussed in Section 1, the strengths of the SLAM abstraction tool

compared to Bandera are its automated refinement techniques which can sig-
nificantly reduce the effort required by the user of the tool. The tradeoffs are
that such techniques are computationally more expensive than the “compiled
abstraction” approach taken by Bandera, and they have not been scaled up to
work with computational patterns often used in Java where programs iterate
over dynamically created data structure.

The BLAST Project [28], inspired by the SLAM work, combines the three-
steps of abstract-check-refine into a single phase. Like SLAM, BLAST also works
on sequential C code, and tradeoffs between the BLAST and Bandera abstraction
approach are the same as those between SLAM and Bandera.

Gerard Holzmann’s Feaver tool extracts Promela programs from annotated C
programs for checking with SPIN [15]. Feaver performs abstraction by consulting
a user built lookup-table that maps textual patterns appearing the the source
code to textual patterns that form pieces of the abstract program. This tool has
been used in several substantial production telecommunications applications.

Eran Yahav has developed a tool for checking safety properties of Java pro-
grams [30] built on top of Lev-Ami and Sagiv’s three-valued logic analysis tool
(TVLA) [21].

9 Conclusion

We have given an overview of some of the technical issues associated Bandera’s
tools for constructing abstract models of Java software. These tools are based
on classical abstract interpretation techniques [6], and aim to provide users with
simple but effective mechanisms for generating tractable models suitable for
verification using widely-applied model-checking engines. Bandera’s abstraction
techniques have been used effectively in case studies with researchers at NASA
Ames involving checking properties of avionics systems.

The strength of the Bandera abstraction tools include their simplicity, their
ability to scale to large programs, and the ease with which they can be applied
to systems with dynamic allocation of data and threads. We believe the main
contribution of our work is the integration of different techniques into a coherent
program abstraction toolset that has the ability to greatly extend the range of
programs to which model checking techniques can be effectively applied.

Weaknesses of the tool include the lack of automated refinement techniques
and the lack of sophisticated heap abstractions. As noted earlier, work on projects
such as SLAM [1] and BLAST [28] have demonstrated the effectiveness of auto-
mated refinement techniques when applied to sequential programs that do not
manipulate dynamically created data. Scaling these techniques up to a language
like Java is an open problem that could a long way toward addressing the lack of
automated refinement techniques in Bandera. Sophisticated heap abstraction ca-
pabilities have been developed in work on shape analysis (e.g., the TVLA project
[21]), but automated abstraction selection and refinement techniques have not
be developed yet. Combining and scaling up the automated predicate abstrac-

tion refinement techniques and heap abstractions with automated refinement is
a research direction that we are pursuing.

References

1.

10.

11.

12.

13.

T. Ball and S. Rajamani. Bebop: a symbolic model-checker for boolean programs.
In K. Havelund, editor, Proceedings of Seventh International SPIN Workshop, vol-
ume 1885 of Lecture Notes in Computer Science, pages 113-130. Springer-Verlag,
2000.

Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of
infinite state systems compositionally and automatically. In Proc. 10th Interna-
tional Conference on Computer Aided Verification, June 1998.

G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder — a second gen-
eration of a Java model-checker. In Proceedings of the Workshop on Advances in
Verification, July 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasdreanu, Robby, and Hongjun Zheng. Bandera : Extracting finite-state models
from Java source code. In Proceedings of the 22nd International Conference on
Software Engineering, June 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Expressing
checkable properties of dynamic systems: The Bandera Specification Language.
International Journal on Software Tools for Technology Transfer, 2002. To appear.
P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 238-252, 1977.

G.J. Holzmann D. Dams, W. Hesse. Abstracting C with abC. In Proc. 14th
International Conference on Computer Aided Verification, July 2002.

Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Transactions on Programming Languages and Systems, 19(2):253—
291, March 1997.

C. Demartini, R. Iosif, and R. Sisto. dSPIN : A dynamic extension of SPIN. In
Theoretical and Applied Aspects of SPIN Model Checking (LNCS 1680), September
1999.

Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S.
Pasdreanu, Robby, Willem Visser, and Hongjun Zheng. Tool-supported program
abstraction for finite-state verification. In Proceedings of the 238rd International
Conference on Software Engineering, May 2001.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, May 1999.

M. M. Gallardo, J. Martinez, P. Merino, and E. Pimentel. aSPIN: Extending SPIN
with abstraction. In Proceedings of Ninth International SPIN Workshop, volume
2318 of Lecture Notes in Computer Science, pages 254-258. Springer-Verlag, 2002.
Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation.
In G. X. Ritter, editor, Information Processing ’89. Proceedings of the IFIP 11th
World Computer Congress, pages 1139-1144. IFIP, North-Holland, 1989.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

John Hatcliff. An introduction to partial evaluation using a simple flowchart lan-
guage. In John Hatcliff, Peter Thiemann, and Torben Mogensen, editors, Pro-
ceedings of the 1998 DIKU International Summer School on Partial Evaluation,
Tutorials in Computer Science, Copenhagen, Denmark, June 1998.

G. Holzmann. Logic verification of ANSI-C code with SPIN. In K. Havelund, edi-
tor, Proceedings of Seventh International SPIN Workshop, volume 1885 of Lecture
Notes in Computer Science, pages 131-147. Springer-Verlag, 2000.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-294, May 1997.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 1999.

Radu Iosif, Matthew B. Dwyer, and John Hatcliff. Translating Java for multiple
model checkers: the bandera back end. Technical Report 2002-1, SAnToS Labora-
tory Technical Report Series, Kansas State University, Department of Computing
and Information Sciences, 2002.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993.

Y. Kesten and A. Pnueli. Modularization and abstraction: The keys to formal
verification. In L. Brim, J. Gruska, and J. Zlatuska, editors, The 23rd International
Symposium on Mathematical Foundations of Computer Science, volume 1450 of
Lecture Notes in Computer Science. Springer-Verlag, 1998.

T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene-based static analysis.
In Proceedings of the Tth International Static Analysis Symposium (SAS’00), 2000.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1991.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Verlag, 1999.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Proceedings of the 1th International Conference on Automated Deduction (LNCS
607), 1992.

Corina S. Pasareanu. Abstraction and Modular Reasoning for the Verification of
Software. PhD thesis, Kansas State University, 2001.

Corina S. Pasireanu, Matthew B. Dwyer, and Michael Huth. Assume-guarantee
model checking of software : A comparative case study. In Theoretical and Applied
Aspects of SPIN Model Checking (LNCS 16 80), September 1999.

Corina S. Péasdreanu, Matthew B. Dwyer, and Willem Visser. Finding feasible
counter-examples when model checking abstracted Java programs. In Proceedings
of the Tth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science, April
2001.

Rupak Majumdar Thomas A. Henzinger, Ranjit Jhala and Gregoire Sutre. Lazy
abstraction. In Proceedings of the 29th ACM Symposium on Principles of Pro-
gramming Languages (POPL’02), 2002.

Raja Valle-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java optimization framework. In Proceedings of CAS-
CON’99, November 1999.

Eran Yahav. Verifying safety properties of concurrent Java programs using 3-valued
logic. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 27-40, January 2001.

